Philadelphia University Faculty of Science Basic Sciences Department

General Chemistry for Health Science - 0216145

Date: 25 / 6 /2023	Final Exam (1)	Second Semester 2022-2023
Name:		Exam time: 120 min
Student No.:		Instructor name:
: (الشعبة) Section		

1			16		
2			17		
3			18		
4			19		
5			20		
6			21		
7			22		
8			23		
9			24		
10			25		
11			26		
12			27		
13			28		
14			29		
15			30		

1 H Hydrogen 1.01																	2 He Helium 4.00
3 Li Lithium 6.94	4 Be Beryllium 9.01											5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 O Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18
11 Na Sodium 22.99	12 Mg Magnesium 24.31											13 Al Aluminum 26.98	14 Si	15 P Phosphorus 30.97	16 S Sulfur 32.07	17 CI Chlorine 35.45	18 Ar Argon 39,95
19 K Potassium 39.10	20 Ca Calcium 40.08	21 Sc Scandium 44.96	22 Ti Titanium 47.87	23 V Vanadium 50.94	24 Cr Chromium 52.00	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobalt 58.93	28 Ni Nickel 58.69	29 Cu Copper 63.55	30 Zn Zinc 65,39	31 Ga Gallium 69.72	32 Ge Germanium 72.61	33 As Arsenic 74.92	34 Se Selenium 78.96	35 Br Bromine 79.90	36 Kr Krypton 83.80
37 Rb Rubidium 85,47	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr Zirconium 91.22	41 Nb Niobium 92.91	42 Mo Molybdenum 95.94	43 Tc Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.91	46 Pd Palladium 106.42	47 Ag Silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn Tin 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127.60	53 I lodine 126.90	54 Xe Xenon 131.29
55 Cs Cesium 132.91	56 Ba Barium 137.33	57 La Lanthanum 138.91	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.97	80 Hg Mercury 200.59	81 TI Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.98	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg Seaborgium (266)	107 Bh Bohrium (264)	108 Hs Hassium (269)	109 Mt Meitnerium (268)							,/	,,	,

الرجاء نقل رمز الإجابة الصحيحة على الجدول في الصفحة الأولى (QUESTION ONE (30 POINTS 1- The number of significant figures in 0.020415 is: b- 4 c- 5 d-3 a- 2 2- What is the oxidation number of manganese Mn in KMnO₄ d- +7 a- +2 b- -2 c- -7 3- For the following reaction Identify the conjugate acid/base pair $CH_3COOH + H_2O \leftarrow \rightarrow CH_3COO^- + H_3O^+$ a - CH₃COOH / H₂O $c- H_2O / H_3O^+$ d- CH₃COO⁻/ H₃O + b- CH₃COOH/ CH₃COO 4- In the dilution process. How many millimeters of 5.6 M HCl solutions are needed to prepare 490.0 ml of 3.8 M HCl solution? a- 233.5 ml b- 299.4 ml c- 332.5 ml d- 177.0 ml 5- The <u>instrument</u> used to measure the <u>atmospheric pressure</u> is called a- Seismometer b- Hydrometer c- PH meter d-Barometer 6- Which of the following gases would have the lowest average molecular speed? b- CO₂ a- N₂ c- Ar d- H₂ 7- Solutions of $K_2SO_4(aq)$, $Pb(NO_3)_2(aq)$ are mixed together. What is the likely precipitate? a- K₂SO₄ b- Pb(NO₃)₂ c- PbSO₄ d- KNO₃ 8- What is the density of Xe gas at a pressure of 2.40 atm and a temperature of 10°C? 82.3g/L b- 8.65 g/L c- 13.6 g/L d- 0.64 g/L 9- The electron configuration of Magnesium (Mg) hasunpaired electrons and its

c- 2, Diamagnetic

d- 2, paramagnetic

a - 1, paramagnetic

b- 0, Diamagnetic

10- The <u>electron</u> a- [Ar]4s ¹ 3d ¹ b- [Ar]4s ² 3d ¹ c- [Ar]4s ¹ 3d ² d- [Ar]4s ² 3d ²	9 10	<u>u</u> is	
11- What is the <u>c</u>	oncentration of Na ⁺ in 0.6.	5 M of Na₂SO₄?	
a- 1.3 M	b- 1.95 M	c- 0.65 M	d- 0.325 M
· · · · · · · · · · · · · · · · · · ·	gases contains 8.24 mole of the contains 8.24 mole of the contains atm, calculate the contains are some contains as the contains are some contains are some contains as the contains are some contains as the contains are some contains are some contains as the contains are some contai		C_2H_2 , and 0.116 mole of C_3H_6 if H_4 gas.
a- 1.92 atm	b- 0.0181 atm	c- 0.0657 atm	d- 1.29 atm
a- n=4, l=3, b- n =4, l=2, c- n=4, l=4, d- n=4, l=1,	f the following sets of quar m_l = -3, m_s = +1/2 m_l = +2, m_s = - 1/2 m_l = +2, m_s = +1/2 m_l =0, m_s = +1/2 following is the <u>electron care</u>		orrect?
a- 1S ² 2S ² 2P ⁶	b- 1S ² 2S ² 2P ⁶ 3S ¹	c- 1S ² 2S ² 2P ⁴	d- 1S ¹
15- Which of the electrons)?	ne following species has	the <u>highest number</u>	of unpaired electrons (single
a- S ⁻	b- S	c- S ⁺	d- S ⁻²
16-What is the <u>m</u> a - 10	naximum number of electro c- 6 b- 14	ons in the d-orbital? d- 2	
17- Which of the a- S ²⁻	following is <u>not isoelectro</u> b- Ba ⁺	nic with a noble gas? c- Al ³⁺	d- Sb ³⁻

18- Describe the change in hybridization (if any) of the Al atom in this reaction:

$$AICI_3 + CI^ \longrightarrow$$
 $AICI_4^-$

b- sp
$$\rightarrow$$
sp²

b- sp
$$\rightarrow$$
sp² c- sp² \rightarrow sp³

19- How many grams of KHP (molar mass 204.2 g/mol) are needed to neutralize 15.5 mL of a 0.12 M NaOH solution?

20- Calculate the pH for 0.09 M of KOH solution.

21- The element that has an outer electronic valence shell $4s^2 4p^5$ is?

22- If K_w is 1×10^{-14} at 25°C, what is the [H⁺] at 25°C, if the [OH⁻] = 2.3×10⁻⁵ M?

23- The geometry of H₂O is?

24- Which one of the following does not obey the octet rule

25- What is the number of nonbonding electrons (lone pair) in O₂?

26- What is the number of moles for 3.1 g sulfur S (32 g/mol)?

- a- 0.96
- B- 3.1
- c- 0.097

27- if the Ka of HCN = 6.2×10^{-10} , what is the Kb of its conjugate base CN

28- Which acid is the strongest acid?

Ka of HCN = 6.2x10 ⁻¹⁰	Ka of CH₃COOH = 1.8 x10 ⁻⁵
Ka of HF = 6.3×10^{-4}	Ka of $HNO_2 = 4.0 \times 10^{-4}$

29- What is the volume in L occupied by 5.58 g of NH₃ at STP?

- a- 125
- b- 22.4
- c- 8.0
- d-7.4

30- Which one of the following statements is correct?

- a. The volume of a gas is inversely (عکسي)proportional to the number of moles of the gas present.
- b. The pressure of a fixed amount of gas is directly proportional (طردي) to the moles of the gas.
- c. The relationship between pressure (P) versus 1/volume (1/V) is directly proportional.
- d. Both B and C.

QUESTION TWO (3 POINTS)

5.12 g of an ionic compound containing lodide ion I^- dissolved in water and treated with AgNO₃ to form 6.37 g AgI precipitate, what is the percent by mass of I^- in the original sample? ((Molar Mass of I = 126.9 g/mol, Ag = 107.9 g/mol, N = 14 g/mol, O = 16 g/mol))

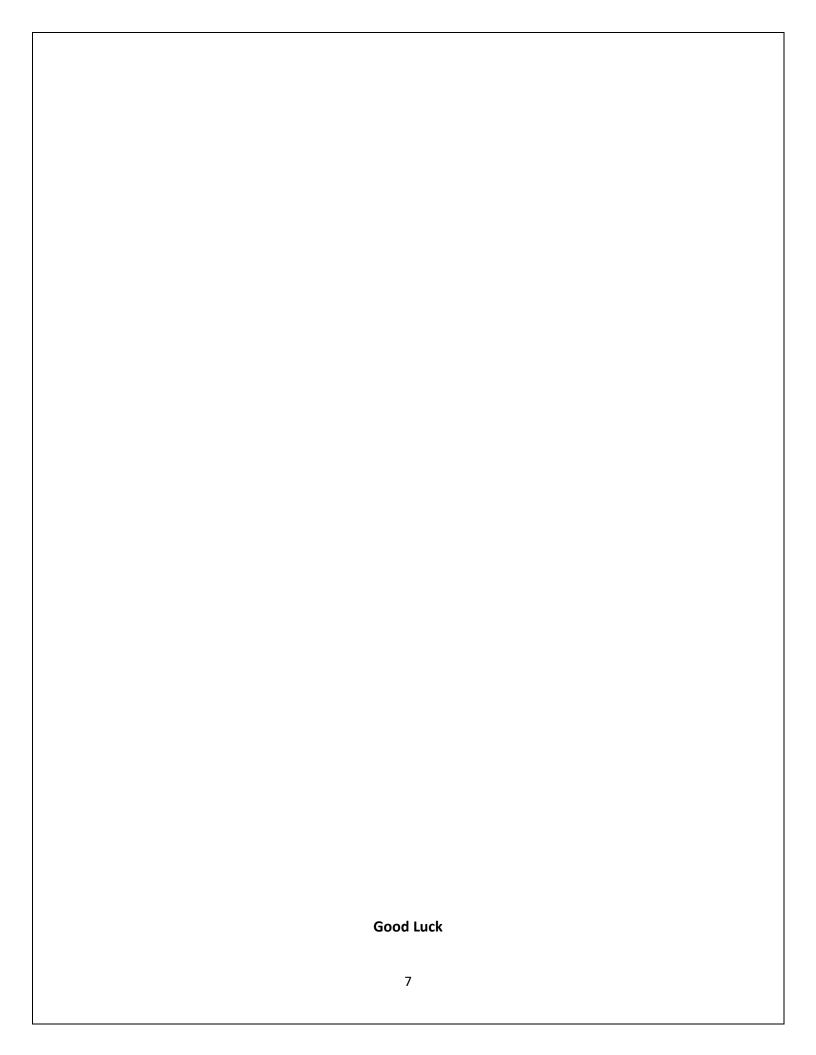
QUESTION THREE (2 POINTS)

For the next structure answer the following

- 1-What is the number of σ bonds......
- 2-What is the number of π bonds......
- 3- The hybridization of the O atom is
- 4-number of nonbonding electrons (lone pair) is

$$\begin{array}{c|c} H & & \\ C & & \\ C & & \\ C & & \\ H & &$$

QUESTION FOUR (3.5 POINTS)


suppose 65.38 g of Zn (Mwt.=32 g/mol) is added to an HCl solution and H₂ gas is liberated according to the following equation. <u>How many liters of hydrogen gas would be generated</u>, supposing that it was collected purely at 25° C and 544 mmHg pressure?

 $Zn + HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$

QUESTION FIVE (2.5 POINTS)

- a- Draw the Lewis dot symbol for sulfur atom S
- b- <u>Draw Lewis structure for CO₂</u> (C is the central atom)

c- What is the <u>formal charge of labeled oxygen</u> in HCO₂-?

